A Necessary Condition for a Good Binning Algorithm in Credit Scoring
نویسنده
چکیده
Binning is a categorization process to transform a continuous variable into a small set of groups or bins. Binning is widely used in credit scoring. In particular, it can be used to define the Weight of Evidence (WOE) transformation. In this paper, we first derive an explicit solution to a logistic regression model with one independent variable that has undergone a WOE transformation. We then use this explicit solution as a necessary condition for a good binning algorithm, thus providing a simple way to catch binning errors.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کامل153-2008: SAS/OR®: Rigorous Constrained Optimized Binning for Credit Scoring
Credit scoring can be defined as a statistical modeling technique used to assign risk to credit applicants or to existing credit accounts. We present a new process that enhances the formulation and solution approach in the SAS® system during the so-called “binning” phase by exploiting SAS/OR optimization capabilities to approach the problem from a mathematically rigorous perspective. Usually, a...
متن کاملA Comparative Study of Data Mining Techniques in Predicting Consumers Credit Card Risk in Banks
It is increasingly important for banks to analyze and understand their risk’s portfolio, in particularly those related to credit card as it is one of those instruments that provide the highest return as well as potentially, most risky. The competitive level for the credit card business have increased significantly in the last few years due to the push by the banks to brought forth many new diff...
متن کامل